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Kinetic roughening with anisotropic growth rules
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Inspired by the chemical etching processes, where experiments show that growth rates depending on the
local environment might play a fundamental role in determining the properties of the etched surfaces, we study
here a model for kinetic roughening that includes explicitly an anisotropic effect in the growth rules. Our
model introduces a dependence of the growth rules on the local environment conditions, i.e., on the local
curvature of the surface. Variables with different local curvatures of the surface, in fact, present different
guenched disorder and a paramgtéwhich could represent different experimental conditidesntroduced to
account for different time scales for the different classes of variables. We show that the introduction of this
time scale separatiom the model leads to a crossover effect on the roughness properties. This effect could
explain the scattering in the experimental measurements available in the literature. The interplay between
anisotropy and the crossover effect and the dependence of critical properties on papasateestigated as
well as the relationship with the known universality classes.
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[. INTRODUCTION self-affine surfaces instead of self-similar ones. In this paper,
we will focus on kinetic roughening phenomena leading to
In the last few years the study of physical phenomenaself-affine(y<1) surfaces.
characterized by a degree of self-organizati@h has at- We recall that the roughness exponent is defined by the
tracted a lot of interest. These models are usually cellulaensemble-averaged width of the interface &¥(l,t)
automata models defined on a discretized lattice, with a=([h(x,t)—(h(x,t))]2)Y2~1Xf(t*2/I), where z is the so-
growth rule that can be either stochastic, when the inhomoealled dynamical exponent, the angular brackets denote the
geneities in the system change with a time scale smaller thasverage over all segments of the interface of lerigénd
the characteristic time scale of the dynamical evolutionover all different realizationd.is a scaling function such that
(noise, or deterministic with a quenched disorder, which f(y)~y* for y<1 andf(y)=const fory>1. The exponent
accounts for the effect of inhomogeneities inside a solid meg= y/z describes the transient roughening, during which the
dium. Both kinds of dynamical rules are characterized by arsurface evolves from the initial condition toward the final
evolution towards an attractive fixed point in which scaleself-affine structure.
free fluctuations in time and space are pre$éht In spite of the strong universality exhibited by the KPZ
The problem of kinetic roughening belongs to this class ofand Sneppen models, in many experimental studies one mea-
models. It received recently an increasing interest in relatiosures values of that are above the ones predicted by both
with nonequilibrium growth model$§3] and in view of its the KPZ and Sneppen universality classes. To give some
practical applications: chemical vapor depositipfl and  examples, we remember the experimental studies of paper
electrochemical depositidib] are just two examples. burning for which one getg=0.70+0.03[10], or the propa-
In this perspective, one is interested in identifying thegation of a forced fluid front in a porous medium, which
dynamic universality classes of kinetic roughening processesxhibits a roughness exponegt=0.73+0.03 [11] and y
and several models has been defined starting from the mo&=0.88+0.08[12].
els falling in the universality class of the Kardar-Parisi- In this paper we propose a generalized model for kinetic
Zhang(KPZ) equation[6]. This equation describes the prop- roughening characterized by anisotropic growth rules and, as
erties of an interfac@(x,t) driven by a stochastic noise and a consequence, separated time scales for the dynamics. The
gives a roughness exponept0.5. Other models are more existence of this time-scale separation induces a cross-over
suitable to describe the propagation of interfaces in randoraffect in the roughness properties, which could erroneously
media, i.e., with a quenched disorder. These models argppear as a genuine nonuniversal critical behavior, and could
driven by an extremal dynamics. In this class fall the so-give an explanation for the above cited scattered experimen-
called Sneppen mod¢r] (referred to as modeB) and the  tal results.
pinning model by directed percolatidi8], which predict a Some results presented here have been already briefly re-
roughness exponent equalye-0.63. These models produce ported on in a lettef13]. In this long paper we give a de-
self-affine surfaces. Recently, a model has been introduced tailed, complete description of our previous work. Moreover,
describe some etching experiments, which leads to the fomwe present a set of new numerical results, which allow us to
mation of self-similar(fracta) structures, and which has reach different and better founded conclusions with respect
been shown to fall in the percolation universality cl§86  to Ref.[13].
Many experiments on surface roughenji@—-12, however, The idea underlying the model is that some experimental
as well as experiments on chemical etchidg] produce parameters can introduce a characteristic scale in the system,
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separating different scaling behaviors. In particular we con-

sider a model that includes explicitly an anisotropy factor, \I/ ETCHANT\I/
say a growth rule dependent on the local environment of the
growing site. The model thus presents a complex interplay
between a global equilibrium and the conditions of a local
dynamics. This choice is motivated by the observation of
roughening phenomena occurring in etching processes that
represent an important tool either in academic research or in
device technology. Their importance is related to the prepa-
ration of single-crystal samples of desired dimensions,
shapes, and orientations. Etching is usually applied to obtain
desired mesas and grooves in semiconductor wafers and
multilayers[14].

In the same field, although in a different context, etching
processes are used to produce textured optical sheets, which SILICON
allow to exploit the light trapping by total internal reflection ) , o ,
to increase the effective absorption in the indirect-gap semi- FIG. 1. Sche_matlc representation of the crystalline silicon lattice
conductors crystalline silicon. Light trapping, originally sug- 25 & Sduare lattice.
gested to increase the response speed of silicon photodiodes
while maintaining high quantum efficiency in the near infra- (at least ong In our model, the anisotropy is introduced by a
red, was later indicated as an important benefit for solar cellphenomenological tunable paramepewhich distinguishes
[14]. sites with a different local environment.

The general suffietchingindicates the ensemble of op-  The introduction of the parametprdefines a characteris-
erations that involve the removal of materials by expendindic scale in the problem. As a result the critical properties of
energy either by mechanical, thermal, or chemical means. Ithe model are characterized by a continuous crossover be-
Ref. [13] the authors focused their attention on chemicaltween two universality classes corresponding to the rough-
etching processes as a reference point to formulate theess exponentg=1 andy=0.63(Sneppen model& andB,
model. One of the most important properties of these prorespectively{7]). In particular one can define a paramater
cesses is represented by the intrinsic anisotrid®y16 of  =p/1—p, which measures the time-scale separation between
the etch rates. For instance in samples of crystalline silicothe dynamics of the different classes of sites. For lengths
etched in solutions of aqueous potassium hydroxit©H) >|*«1/2— p/p one observes a behavior characteristic of the
with isopropil alcohol, depending on the concentration of theSneppen modeB universality class y=0.63), while forl
etchant and the temperature, tli&ll) direction etches <I*«1/2—p/p one observes a behavior characteristic of the
slower than the others by a factor that can be of order 100 o8neppen modeA universality class. The existence of this
more[17]. The degree of anisotropy affects the properties ofcrossover is difficult to detect directly on the plot for the
the surface, which turns out to be rough with an apparentlyscaling of the surface widtiv(l) (especially for finite sets
nonuniversal roughness exponent. of datg and it becomes evident looking at the power spectra.

Although the definition of the model is very general we This explains why large-scale experiments could give the
will briefly consider the chemistry of the etching process inimpression of nonuniversality in the critical properties of
order to exhibit a physical framework that allows to under-rough surfaces.
stand the meaning of the definitions and their interpretation. Let us look at the meaning qf in the case of etching. If

The disorder in the etching process is related to the impuwe represent the crystalline lattice of the silicon on a two-
rities in the lattice. Such impurities, e.g., vacant atoms, redimensional plane we can imagine a square lattice where
duce the binding energy of atoms nearby the vacancy. Bysee Fig. 1 the atoms can be found in each of the four
assigning to each sit@ton) of our lattice a random number positions marked in figure by the letters a—d. The four posi-
X; we assume that a distribution of vacancies, or other kindéions correspond to different oxidation states: from the situ-
of impurities, is present in the system, and this induces flucation(c) (oxidation number Pwhich occurs only in the bulk,
tuations in the binding energy of atoms due to this disorderto the situation(d) (oxidation number-3). Note that all the
If we assume to be in a condition of slow dynamics, that is tasurface atoms are passivated by hydrogen atoms. The atoms
say the driving fieldwhich in our case is represented by the in the positions(a) and (b), corresponding, respectively, to
concentration of etchantends to zerq18], we can look at the oxidation numbers 2 and— 1 (two and one heteropolar
the etching as an extremal process, where the etchant dibends, i.e., Si-H bondsplay an important role in explaining,
solves the atom with the smallest binding energy. This isat least from a heuristic point of view, the origin of the
correct for low etchant concentrations and corresponds act@anisotropy in the etched ratg$6]. The parametep quanti-
ally to the situation experimentally more interesting, infies the ratio of the etch rates between the sites in the posi-
which rough surfaces are produced. tions (a) and(b). The basic idea is that in th&11) plane of

In order to reproduce the experimental conditi¢type of  silicon, there is only one heteropolar bond per silicon atom.
etchant, concentration, temperafuaemicroscopic model for Therefore there are three bonds to break for dissolution,
the physical process should contain some tunable parametesile other planegexcept the(110] have more than one
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heteropolar bond and accordingly a smaller number of bonds S n
must be broken. i ‘ . p
The paper is organized as follows. In Sec. Il we describe
in detail the model and the set up of numerical simulations. o f ‘ /'\$
; : . t=t*
In Sec. Ill we present and discuss the numerical results in s M site IS S site
/

relation with the Sneppen model A and B universality
classes. In Sec. IV a discussion of the results and some con-
clusions are drawn together with a planning of future re-

searches. FIG. 2. Schematic representation of interface dynamics.

Il. MODEL =1/2*RAN if 7(x,h,t)=0 and »(x,h,t+1)= 5(x,h,t)

We give now a detailed definition of the model. Thegill,lzdlfln(x'h’t)io' whereRANis a random value between
rlno?/\?l IS dEf!SEd on}alsg_uare 2.D Ia}tpce t;lteg at 4_§ﬁe Fig. (4) updating of the random variables of the sites, which
).' € consider a imensiona '|nter ac (X)._ (.1 have changed their height but that did not change their class

with x=1,2,... L, whereL is the linear extension of the belonging,(sitesS only): 7(x,h,t+1)=1/2*RAN

interface in thex direction. The initial condition for the dy- The parar’netep can v.ary in the rangé0:1/2] If we
namical evolution of this interface is given biy(2x,0) definetg as the characteristic time scale ®wariables and

=1Vxe[1L/2] andh(2x—1,0=0Vxe[1,L/2], in order S :
to have both classes of variablgattice planesparticipating tm the characteristic ime scale fof variables one has

in the dynamics from the beginning, but different initial con- ty p
ditions do not change the properties of the model. The inter- r= 1o 3
face, which satisfies locally the conditiof9] S P

The growth of the interface, in the etching process, repre-

[h(x,t) +1—h(x=1n)[<1, sents the invasion of the etchants into the silicon wafer. From
(1)  this point of view the updating of the sit€§) mimics the
|lh(x,t)+1—h(x+1t)|<1 etching of the(111) planes and the updating of tii®l) sites

the etching in the(100 direction. Forp=1/2 all the sites
contains two classes of random variables that correspond thich take part in the dynamics are equivalent and there is
two separate classes of sites. The sidsfor which it holds N0 anisotropy (= 1), whereas the cage=0 corresponds to
V?h>0 (called minimum siteswhich are, microscopically, the maximal anisotropy in which111)/v(100=r =0, where
the atoms with two heteropolar bonds, and the sites on &(111) @hd v 100y are the etch rates in the corresponding di-
slope[slope(9 siteg for which one ha&/?h=0. These last rections.
sites correspond microscopically to atoms with one heteropo- Our model can be viewed as a variation of the Sneppen
lar bond. To each class of sites is assigned a class of Gauggodel for quenched surface growth, where two important
ian distributed uncorrelated random variables that mimic the&lements are addedt) The anisotropy in the distribution of
disorder, and represents physically, for the case of etchinghe quenched random field, depending on the local charac-

the binding energy of atoms: teristics of the growing surface ari@) a time-scale separa-
tion for the dynamical evolution of the two classes of vari-
[0:0.5 if x is such thatV2h=0 ables § sites andM siteg, which is tuned by the parameter
n(x,h) e @ p

(0.5:1] if x is such thatV?h>0.

. . . . I1l. NUMERICAL RESULTS
The sites withV?h<0, for which all the chemical bonds are

homopolar, i.e., Si-Si, do not take part to the dynamics and We have studied this cellular automata by numerical
they have assigned a zero value of the random variable. Psimulations in order to analyze its dynamical roughening
riodic boundary conditions are assumed along xhdirec-  properties. The sizes we have chosen for the numerical simu-
tion. lations range from. =2048 toL =8192. For each value @f

The system evolves by updating the sitewith the larg-  (we have considereg¢=0.0,0.02,0.2,0.5), FOsimulations
est random variable in one of the two classes of sites chosetasting 10 time steps have been performed and we have
at its turn, with a probabilityp. One thus updates with prob- computed the growth exponegt which rules the time evo-
ability p a site(S) and with probability -p a site(M) ac-  lution of the widthW(t) of the surfacg W(t)~t#] before
cording to the rulegsee Fig. 2 the stationary state is reached, and the roughness expgnent

(1) h(i*,t+1)=h(i*,t)+2, p[i*,h(i*,t+1),t+1]=0,  which gives the scaling of the width of the surfade&/(l)

(2) updating all the sites necessary to make satisfied the-1¥], in the stationary state. The stationary state is called
conditions 1(this phase is assumed to be instantaneous witkelf-organized in that it is reached spontaneously by the sys-
respect to extremal dynamics tem independently of the initial conditions. This self-

(3) updating of the random variables for the sites, whichorganization is confirmed by an analysis of the temporal evo-
changed their class of belonging. In particubgix,h,t+1) lution of the distribution of quenched variablelghe
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1.5 15.0

——e p=0.0

1.0 | s—=o p=0.02 10.0 e—=a p=0.02

500 1000 5.0 .
t 0 500 1000
t

FIG. 3. Time evolutionfadimensional unijsof the momenim,
(adimensional unijsof the growing interface, normalized by the
second moment, fgg=0.0, 0.02, and 0.fskewnesp One sees that
asymptoticallym; vanishes for all values gd.

FIG. 5. Time evolutionfadimensional unijsof the momenimg
(adimensional unijsof the growing interface, normalized by the
second moment, fqu=0.0, 0.02, and 0.5. One sees that asymptoti-
cally mg vanishes for all values gd.

histogram®,(#)]. To characterize temporal correlations in — . . )
the dynamics and check that the asymptotic state is criticalVhereh(t) is the mean surface height at timeVe get that,
we studied the distribution of the avalanches in thedfter a transient, all the odd mqments vanish gnd the even
asymptotic state. As an independent check about the univei;’-nes_t_end to constant valuesee F|g§. 3-p In_parhcular the
sality of the roughness properties of the model, we havé&ondition for the skewness;=0 (Fig. 3), which character-
studied numerically the power spectruBtk) of the height  12€S the stationary critical staf@], is realized after about £0
profile. time steps per site, independent of the valuepofThese
To ensure that the system is in the stationary state, wEeSUlts imply that the higher moments of the variable

studied the behavior of theth moments(for n=3,4,5) of ~N(X.t)—(h) scale in a trivial way(they are powers of the
h(x,t) normalized to second momentum: second momeiit and after the transient the probability dis-

tribution of the variableh(x,t), which can be viewed as a
random variable, is Gaussian. The amplitude of the normal-

_ ized even momentm,,, in the asymptotic stationary state,
<2 [h(i ,t)—h(t)]"> characterizes the roughness properties of the interface.
my(t) = ' =, (4) In Table | we report the measured values for the dynami-
(<E [h(i t)—ﬁ(t)]2>) cal exponentsB, which turns out to be independent pf
i ’ Figures 6—9 show the scaling behavioMgf(1) for different

values ofp. For p=0.0 (i.e., maximal anisotropythe mea-
sured values of are affected by a finite-size effect and they
tend, in the limitL—o, to the valuex=1.0 found for
Sneppen modeA [7] (Fig. 6). In this case the surface is
composed by very big pyramidBig. 10. On the other hand,
for p=0.5, one recovers the universality class of Sneppen
modelB with y=0.63(Fig. 9). For all the other values qf
between 0 and 0.5p=0.02 in Fig. 7 andp=0.2 in Fig. 8§,
trying to perform fits away from the saturation regions, one
would be tempted to invoke the existence of a nonuniversal
behavior ruled by the parameter A careful observation

TABLE I. Values of the dynamical exponegtin our model for
different values of the anisotropy paramegper

1.5 :
0 500 1000
t p B
FIG. 4. Time evolutionadimensional unitsof the momenim, 0.0 0.962)
(adimensional unijsof the growing interface, normalized by the 0.02 0.9%2)
second moment, fqp=0.0, 0.02, and 0.5. One sees that asymptoti- 0.2 0.942)
cally m, tends to different constant values for the different values 0.5 0.952)

of p.
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107 10°
—=a L=1024 B —=a L=1024
10° [ &—a L=2048 - . [ a—a L=2048
—a L=8192 10 ¢ . L=8192
10°
10* [ 0
o 10° | £ 10°
= , =
107 10!
10' [
0
10° [ 10
10-1 0 I1 I2 ‘3 4 10-1 0 I1 I2 ‘3 4
10 10 10 10 10 10 10 10 10 10
1 1

FIG. 6. W2(l) vs | [both W?(l) and| are expressed in adimen- FIG. 8. W2(1) vs| [both W2(l) andl| are expressed in adimen-
sional unitg for p=0.0 and different system sizes. The lower fit sional unit§ for p=0.2 and different system sizes.
(dot-dashed linecorresponds to a size=512, giving and expo-
ngntX=O.8&2), vvhi!e the upper fitdashed Iinécorre§ponds to a larger thanr]g/' can grow[2]. For p=0, instead, the histo-
Zl)feeLCt:tﬁ:&Ll?fhgn:Xg“:’les ?n exponemtjeol.gd?g : ll'n t.kt"f case W8 gram has no self-organized critical stafég. 11). Looking

P ponent convergeste L in the AimitL—. carefully at Fig. 11 we can see that, while in the initial tran-
sient there are a fe®sites, in the asymptotic state most sites
areSsites. In fact nearly all variables larger than (e M
variableg are disappeared. This observation agrees with the
actual structure of the surface, which is composed by very

puts in evidence that the curves #/(l) seem to exhibit a
crossover between the Sneppen mode&ndB universality
classes. On the basis @f one can define a characteristic

length 1* «1/2—p/p above which one could see theg big pyramids(Fig. 10, with a roughness exponemt=1
20'63. behavior and below which one could see X.hel This picture is confirmed by the acceptance proéilgy),
behavior. We shall come back to these considerations Iat%hiCh is shown in Fig. 15. As in the Bak and SnepiBs)
on&/vvgehna\\//v: aSIZiIIs?lljsdcigzst;Zetiﬁ)r?(\a,vg/sﬁﬁg;a&)f the distribu model, the acceptation profil¢ghat is to say the distribution
tion of random variables on the invading interfdtlee his- of the \{alues OT ‘?1” updated. quenched. vgrifibles up to the
; o h . . lue f h actual time exhibits correlation propertieét is not flab,
ogram ®(»), where 5 is a generic value fory(x,h)], reflecting temporal correlations in the dynamics. But, while

\r,1v:rlr?hcsfs _?Lgrfjst 'gpg;tﬁﬁgesfz E?gﬁlsaxltr;h%x“r?mnalqu;the acceptation profile fd® variables is quite similar to that
11 '14 ' o u the imu Ifl . fW ;&O '956f the BS model, going to zero linearly pt, the acceptation
ﬂ_ b r:eléc?n Se? .1(;7) Sg. -to.rbga{.nlzet? to'rpth ' profile for M variables has a more complicated behavior.
perposition of two thefa functons, one for each class of vari. 115 GIerence originates maybe from the fact tSari-
ables, each one characterized by a critical thresipg(gh) ables (7<[0.5,1]) can turn intoM (< [0,0.5]) variables

q di h h ) f th thresh during the dynamics of the system, whilevariables cannot
epending on the paramegar The meangng of tNese treSN- 1,0comes variables. MoreoverS variables can have devel-
olds is that onlyS variables larger tham; and M variables

10°
108 L L=1024 =—=a L=1024
~—a L=2048 10¢ | ~—a L=2048
ot | e L8192
\ 10°
107 ¢
& = 10 b
B 107 | B
10' | 10' |
10° | 10°
10-1 0 I1 I2 ‘3 4 10-1 0 I1 I2 ‘3 4
10 10 10 10 10 10 10 10 10 10
1 1
FIG. 7. W2(l) vs | [bothW?(l) andl are expressed in adimen- FIG. 9. W2(I) vs | [bothW?(l) and| are expressed in adimen-
sional unitg for p=0.02 and different system sizes. sional unitg for p=0.5 and different system sizes.
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6.0

s — - =100
& ---0 t=500 4
4+—a t=5000

e—4 t=50000

40 r

@(n)

20

0.0 X
0.0 0.2 0.4 0.6 0.8 1.0

n
0 1000 2000

FIG. 12. Histogram®(7) (7 is an adimensional numbeof
FIG. 10. A realization of the growing surface fpe=0.0 (hori- quenched variables, at different timegor p=0.02.
zontal adimensional position on theaxis). The surface is com-

posed by very big pyramids, thus with a strong prevalenc& of ing on the parametgs. One interesting observation is that,
sites.

even in the cas@=0, that is to say onlyM sites can be

selected by the extremal dynamical rule, there is a stationary
oped correlations before the transitionMovariable and this  state for the system withs# 0. This is due to the particular
affects the shape @f( %) for »<[0.5,1]. This might account

geometry of the lattice, for which the growth of & site
for the linear part of the acceptation profile lf variables, implies the creation or annihilation of sonSssites. In other
around»=1, but the nonlinear part is more puzzling. The words, there cannot be surfaces without slog@sites.

coupling betweerS variables andn variables could play a The roughness exponent accounts for scale free spatial
role in this behavior, too, but at the moment we have no cleafluctuations in the interface profile. In order to characterize

explanation of it. From th@(») we can get a good estima- the eventual scale free fluctuations in the dynamical evolu-
tion of the critical thresholds;? and 7} for different values  tion of the system at its asymptotic critical state, that is to say
of p (see Table ).

long-range temporal correlations, we have studied the ava-
The stationary state is characterized by a constant rati@nche distribution. An avalanche is defined as a sequence of

betweenS and M sites, that is to say the evolution equation causally connected elementary growth events. For the class
for the densitiespg and py, of sitesS and M, respectively, of models with quenched disorder and an extremal dynamics
have an attractive fixed point in the stationary sfate Figs. to which our model belongs, the initiator of a critical, scale
16(a)—16(d)], with the asymptotic values gfs,py depend- invariant, avalanche is identified in the critical state by a site

with quenched variablg} (p) or 3(p) (respectively, for an
6.0 : " : M initiator and for anSinitiator). The values ofp) and 77
o ——e (=100 I
&---9 (=500 4.0 :
~— t=5000 o ——o =100
=== (=50000 e ---o t=500
40 1 &—a (=5000
3.0 | =—=s 1=50000 1
G
=/

(et
®
'. |
© |
) l I
@ ; |
v‘ 'l 1
. ‘ ‘ . |
0.0 0.2 0.4 0.6 0.8 1.0 v ' T
n 0.0 : :
0.0 0.2 04 0.6 0.8 1.0
FIG. 11. Histogram®(#) (# is an adimensional nhumbeof n
quenched variables, at different timégadimensional computer
units), for p=0.0. Asymptotically, al(most of the M variables are FIG. 13. Histogramd(#) of quenched variables, at different
eliminated.

timest, for p=0.2.
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3.0 . TABLE 1. Critical thresholdszZ, 7Y of variablesS andM, for
o ——¢ =100 different values of.
e---o t=500
+——a (=5000 p e N
== t=50000
2.0 0.02 0.471) 0.501)
0.2 0.411) 0.541)
G 05 0.351) 0.631)
LS
1.0 - X
PX(s;78) = = ®
S s
s=1
0.0

0.0
We have performed a set of about®li@alizations of size
_ _ _ _ L=8192, lasting each one>210° time steps, and collected
FIG. 14. Histogram®(7) (7 is an adimensional numbeof  the statistics ofS and M avalanches over the last L@me
quenched variables, at different timgdor p=0.5. steps, forp=0.02, 0.2, and 0.5. These simulations required
about two months of CPU time on our computé@setwork
for different values ofp can be obtained by the asymptotic of DEC alpha machines with clocks going from 266 to 500
histogram distributions shown in Figs. 11-14. In our caseMHz), and are at the best of our computation possibilities.
there are two classes of variables, SiandM sites, and two  To reduce numerical problems connected with the approxi-
possible initiators for an avalanche. We call the avalanchemation on#™ , 7S, we used an alternative definition of criti-
that start with arSsite, Savalanches, and the avalanches thaical avalanches in models with extremal dynamics, which re-
start with anM site, M avalanches. An avalanche lasts whensides on the causal relation between updated sites inside an
a variable, which has been updated before the growth of thgvalanchefor details on the definition of critical avalanches
initiator, is selected by the extremal dynamics. The statisticgee Refs[21—23). The results are shown in Figs. 17 and 18.
of off-critical avalanches has been shown to have the forngven after this big computational effort, our numerical re-
(2,20 sults are still a bit noisy. In particular the statistic ®ava-
lanches fop=0.02 is really poor. This is due to the fact that
5) for smallp values most of sites selected by the dynamics are
M sites. Consequently, it is difficult to observe a quite clear
power-law behavior for both th& avalanches an®l ava-
whereX=S,M, andz is the initiator of anX avalanche. This lanches distributions. We point out that the presence of long-
distribution becomes a pure power law fge= 7,2(_ In the range temporal correlations is not necessary for the model to
limit t—o the system self-organizes into the critical statehave self-similar or self-affine spatial properties, as already
n= 7%, and the(normalized avalanche size distribution be- Observed in a different contek®5].
comes

PX(s; ) =5 Xfx(| p— 7}|s7X),

105.2
105.0
5
o
104.7
10 o 110*
© @
008 02 04 06 0.8 1 10 10® 10° TR 10° 10° 10°
n o i
FIG. 15. Asymptotic acceptatiomot normalized profile a( %) FIG. 16. Time evolution {( is expressed in adimensional com-
(n is an adimensional numberfor p=0.02 (circles, p=0.2 puter time unity of the densitiesps and py, of sites S and M,
(squares andp=0.5 (triangles. respectively, fop=0.0(a), p=0.02(b), p=0.2(c), andp=0.5(d).

046108-7



RAFFAELE CAFIERO PHYSICAL REVIEW E 63 046108

_ o——o p=0.0
10 e p=0.02 10° S z=0_02
» ° p=0.2 +— p=0.2
10 [ A p=0.5 7 _0 5
) 10 T p=l.
BTN 2T
S,
10° ‘f%“l%g-gfi
107 b : : :
10' 10° 10’ 10* 10°
s
FIG. 17. BinnedS avalanches distribution for different values

—2

107"
k

of p. 10

In order to better establish the critical properties of our -
model we have measured the power spectS(k) of the _ FI_G. 19._ Power_spectrurﬁ(k) (all the_quant_ltles are expressed
equilibrium surface. The model studied here is a discretize(ﬂ“_"j‘d'm'ans'o'”al units of the computer simulaia our model for
cellular automaton, which can be thought as a modified verP=00, 0.02, 0.2, and 0.values referring to, respectively, the
sion of the Sneppen model for quenched interface growthP!0ts from bottom fo topandL =2048. As a guide for the eye, we
The Sneppen model has been shown to be, at least ib 1 report the_ scaling law for KPZdotted ling and QEW(dashed ling
dimensions, in the same universality class of the continuoulémversaIlty classes.
Kardar-Parisi-Zhang equation with quenched nqiR&PZ) :
[24]. It is natural, but not necessarily true, to suppose that for The propagatoG(kl,w) of Eq: (7) is related tq the power
our model, too, it is possible to find a formulation as a Con_spectrumS(k) of _the |nterface in the asymptotic state. The
tinuous growth equation. Given a general growth equatiorPOWer spectrum is so defined
for h(x,t) like

S(k)=(FT[hOOh(x) 1) =([h(k)[?), (10
dh(x,t)
o - ALGGD T+ y(x.1), (7)  whereFT[ ...] is the Fourier-transform operator, the aver-
age is over different realizations of the noi$&x) =h(x,t
whereA[ .. .] is an operator acting on(x,t) andy(x,t) is =), andh(k) is the Fourier transform ofi(x). Equation

an uncorrelated quenched noigee “temporal” direction (10) is valid is the case the noise is uncorrelated in space and
corresponds to the growth direction of the surfadgethe  time, which is the case of our model. The relation between
operatorA[ ...] is linear and local, the equation can be G(k,®) andS(k) is the following[3]:

Fourier transformed into

~ L ~ G(k,0=0)?=5(k). (11)
iwh(k,w)=A(k)h(k,w)+ y(k,w), (8)
Equation(11) tells us that the power spectrum of the inter-
and by introducing the propagat@(k,), face can give informations drdependent part of the propa-
_ _ gator G(k,w=0) and consequently on the structure of the
h(k,®)=G(k w)y(k,o), (9 operatorA(k) in Eq. (8). For self-affine surfaces, the power

_ . spectrum follows a power-law scaling
whereG(k,w)=[io—A(k)] .

S(k)~k2°, (12)
= Do .
10° [a%%,, ¢ p=0.02 where § is related to theglobal roughness exponentgqp
‘HEEE’D;". o p=0.2 through the scaling relation®= 2 x40+ 1 [3].
210 | “EE:E.;'.,. s p=0.5 Figures 19 and 20 report the behavior of the power spec-
5 “Tffﬂn;". trum S(k) of the interface profile in the critical state for
A Ve T system size =2048,8192 and different values pf
107 ‘AA‘fDDDD;-.. For large values ok, finite-size effects connected to the
g oo discretized nature of the model become relevant and there is
» a0 a deviation from the power-law behavior. Away from this
10 o v o I 4 10° saturation effect it is evident in this case h&fk) is char-

acterized by a clear crossover between two power-law be-
FIG. 18. BinnedM avalanches distribution for different values haviors. In the lowk region [k<k*«p/(1/2—p)=11*]
of p. S(k) scales with an exponend,,, close to 1[actually
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o——o p=0.0 IV. CONCLUSIONS

== p=0.02 In this paper we have introduced a model for surface
- +— p=0.2 roughening whose main peculiarity is that of taking explic-
107 A v p=0.5 itly into account the anisotropy of t_he growth process by
means of a tunable phenomenological paramptewhich
introduces local, i.e., dependent on the local environment,
dynamical rules in the growth. The simple introduction of
just one anisotropy parameteris far from being able to
captureall the characteristics of etching processes, and in
general of surface roughening experiments. In etching ex-
periments, for example, transport phenomena in the solution
are likely to be important and both concentration and agita-
‘ tion have strong effects on transport. Nevertheless, our
1072 10”7 model captures at least some basic elements of the relation-
k ship between anisotropy and the apparent nonuniversality
observed experimentally in etching processes. Moreover, the
FIG. 20. Power spectrur(k) (all quantities are expressed in general requirement of a microscopic dynamical rule de-
adimensional units of the computer simulajiaf our model for pending on the local environment could be a key element in

p=0.0, 0.02, 0.2, and 0.%values referring to, respectively, the the apparently observed nonuniversality in kinetic roughen-
plots from bottom to topandL =8192. As a guide for the eye, we jnqg phenomena.

report thPT scaling law for KPZdotted ling and QEW(dashed ling As a main outcome, the model exhibits a crossover be-
universality classes. havior in its critical properties. For each value of the anisot-
ropy factorp the system reaches a critical stationary state,
1.073)] for all values ofp. The QKPZ(SnepperB mode) with a characteristic length separating a KPZ-lii@neppen
universality class is characterized by a global roughness e mode) behavior from a QEW-like(SneppenA mode)
ponent[coinciding with the local exponent we have mea- behav_ior. The crossover from one scaling behavior to the
sured throughWv2(1)] Xglob=X = 0.63, giving6=1.13, quite other is _tuned b)z/ the anisotropy paramgieif one looks at
near to what we find. For intermediate valueskofk>k*  the scaling ofW*(l), the crossover effect cannot be easily
«p/(1/2—p)=1/*] one gets an exponent. 4 quite near to discovered, and the system seems to have a nonuniversal
the value 1.7(we find values between 1.7 and 1)86hich roughness exponent. A careful analysis of the power spec-

corresponds to the quenched-Edwards-Wilkins@EW) trum S(k), however, shows a clear crossover effect. These
universality class Xg0,~ 1.2[3]), independently of the value results can probably help to explain the relevant discrepan-
of p. We point out that the QEW model is super rough with cies among experimental resufts0-12. We believe that

lobal h 12 and a local ‘ this behavior is the outcome of the complex interplay be-
a global roughness exponefijo,~ 1.2, and a local exponent  ean the global dynamics, which selects at each time step
x=1.0[the one we measured throug¥?(l)]. Forp near 0.5

. . o R the weakest site and the anisotropy effect that takes into ac-
the intermediatek region is very small, and it is difficult t0  ~5unt local constraints in the growth.

distinguish it from the saturation region. The same happens i is worthwhile to stress how our model suggests the
when one tries to fit the low region forp close to zero. If  possibility of several analytical approaches, from the treat-
p=0.0 or=0.5, no crossover effect is observed, since thesenent of the problem in terms of a continuous stochastic dy-
two values ofp correspond to the “pure” QEW and KPZ namical equation, to the single site mean-field appr¢ash
universality classes, respectively. or to the application of a method recently proposed for dy-
From these results we have a confirmation that the modetamical models driven by an extremal dynanji2$—23,21.
does not exhibit nonuniversal critical properti€ehe appar- Particularly promising, in this respect, is a recently proposed
ent nonuniversal roughness exponent is the consequence ofianperturbative renormalization-group approg28], which
crossover effect, tuned by the paramgieThe fact that this  allows one to study self-affine problems.
crossover effect is difficult to observe when studying the
scaling of the mean-square widi?(l) of the sample, could ACKNOWLEDGMENT
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