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Kinetic roughening with anisotropic growth rules
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Inspired by the chemical etching processes, where experiments show that growth rates depending on the
local environment might play a fundamental role in determining the properties of the etched surfaces, we study
here a model for kinetic roughening that includes explicitly an anisotropic effect in the growth rules. Our
model introduces a dependence of the growth rules on the local environment conditions, i.e., on the local
curvature of the surface. Variables with different local curvatures of the surface, in fact, present different
quenched disorder and a parameterp ~which could represent different experimental conditions! is introduced to
account for different time scales for the different classes of variables. We show that the introduction of this
time scale separationin the model leads to a crossover effect on the roughness properties. This effect could
explain the scattering in the experimental measurements available in the literature. The interplay between
anisotropy and the crossover effect and the dependence of critical properties on parameterp is investigated as
well as the relationship with the known universality classes.
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I. INTRODUCTION

In the last few years the study of physical phenome
characterized by a degree of self-organization@1#, has at-
tracted a lot of interest. These models are usually cellu
automata models defined on a discretized lattice, with
growth rule that can be either stochastic, when the inhom
geneities in the system change with a time scale smaller
the characteristic time scale of the dynamical evolut
~noise!, or deterministic with a quenched disorder, whi
accounts for the effect of inhomogeneities inside a solid m
dium. Both kinds of dynamical rules are characterized by
evolution towards an attractive fixed point in which sca
free fluctuations in time and space are present@2#.

The problem of kinetic roughening belongs to this class
models. It received recently an increasing interest in rela
with nonequilibrium growth models@3# and in view of its
practical applications: chemical vapor deposition@4# and
electrochemical deposition@5# are just two examples.

In this perspective, one is interested in identifying t
dynamic universality classes of kinetic roughening proces
and several models has been defined starting from the m
els falling in the universality class of the Kardar-Pari
Zhang~KPZ! equation@6#. This equation describes the pro
erties of an interfaceh(x,t) driven by a stochastic noise an
gives a roughness exponentx50.5. Other models are mor
suitable to describe the propagation of interfaces in rand
media, i.e., with a quenched disorder. These models
driven by an extremal dynamics. In this class fall the s
called Sneppen model@7# ~referred to as modelB) and the
pinning model by directed percolation@8#, which predict a
roughness exponent equal tox50.63. These models produc
self-affine surfaces. Recently, a model has been introduce
describe some etching experiments, which leads to the
mation of self-similar ~fractal! structures, and which ha
been shown to fall in the percolation universality class@9#.
Many experiments on surface roughening@10–12#, however,
as well as experiments on chemical etching@13# produce
1063-651X/2001/63~4!/046108~10!/$20.00 63 0461
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self-affine surfaces instead of self-similar ones. In this pap
we will focus on kinetic roughening phenomena leading
self-affine(x,1) surfaces.

We recall that the roughness exponent is defined by
ensemble-averaged width of the interface asW( l ,t)
5^@h(x,t)2^h(x,t)&#2&1/2; l x f (t1/z/ l ), where z is the so-
called dynamical exponent, the angular brackets denote
average over all segments of the interface of lengthl and
over all different realizations.f is a scaling function such tha
f (y);yx for y!1 and f (y)5const fory@1. The exponent
b5x/z describes the transient roughening, during which
surface evolves from the initial condition toward the fin
self-affine structure.

In spite of the strong universality exhibited by the KP
and Sneppen models, in many experimental studies one m
sures values ofx that are above the ones predicted by bo
the KPZ and Sneppen universality classes. To give so
examples, we remember the experimental studies of pa
burning for which one getsx50.7060.03@10#, or the propa-
gation of a forced fluid front in a porous medium, whic
exhibits a roughness exponentx50.7360.03 @11# and x
50.8860.08 @12#.

In this paper we propose a generalized model for kine
roughening characterized by anisotropic growth rules and
a consequence, separated time scales for the dynamics
existence of this time-scale separation induces a cross-
effect in the roughness properties, which could erroneou
appear as a genuine nonuniversal critical behavior, and c
give an explanation for the above cited scattered experim
tal results.

Some results presented here have been already briefl
ported on in a letter@13#. In this long paper we give a de
tailed, complete description of our previous work. Moreov
we present a set of new numerical results, which allow us
reach different and better founded conclusions with resp
to Ref. @13#.

The idea underlying the model is that some experimen
parameters can introduce a characteristic scale in the sys
©2001 The American Physical Society08-1
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separating different scaling behaviors. In particular we c
sider a model that includes explicitly an anisotropy fact
say a growth rule dependent on the local environment of
growing site. The model thus presents a complex interp
between a global equilibrium and the conditions of a lo
dynamics. This choice is motivated by the observation
roughening phenomena occurring in etching processes
represent an important tool either in academic research o
device technology. Their importance is related to the pre
ration of single-crystal samples of desired dimensio
shapes, and orientations. Etching is usually applied to ob
desired mesas and grooves in semiconductor wafers
multilayers@14#.

In the same field, although in a different context, etch
processes are used to produce textured optical sheets, w
allow to exploit the light trapping by total internal reflectio
to increase the effective absorption in the indirect-gap se
conductors crystalline silicon. Light trapping, originally su
gested to increase the response speed of silicon photod
while maintaining high quantum efficiency in the near infr
red, was later indicated as an important benefit for solar c
@14#.

The general suffixetching indicates the ensemble of op
erations that involve the removal of materials by expend
energy either by mechanical, thermal, or chemical means
Ref. @13# the authors focused their attention on chemi
etching processes as a reference point to formulate
model. One of the most important properties of these p
cesses is represented by the intrinsic anisotropy@15,16# of
the etch rates. For instance in samples of crystalline sili
etched in solutions of aqueous potassium hydroxide~K-OH!
with isopropil alcohol, depending on the concentration of
etchant and the temperature, the~111! direction etches
slower than the others by a factor that can be of order 10
more@17#. The degree of anisotropy affects the properties
the surface, which turns out to be rough with an appare
nonuniversal roughness exponent.

Although the definition of the model is very general w
will briefly consider the chemistry of the etching process
order to exhibit a physical framework that allows to und
stand the meaning of the definitions and their interpretat

The disorder in the etching process is related to the im
rities in the lattice. Such impurities, e.g., vacant atoms,
duce the binding energy of atoms nearby the vacancy.
assigning to each site~atom! of our lattice a random numbe
xi we assume that a distribution of vacancies, or other ki
of impurities, is present in the system, and this induces fl
tuations in the binding energy of atoms due to this disord
If we assume to be in a condition of slow dynamics, that is
say the driving field~which in our case is represented by t
concentration of etchant! tends to zero@18#, we can look at
the etching as an extremal process, where the etchant
solves the atom with the smallest binding energy. This
correct for low etchant concentrations and corresponds a
ally to the situation experimentally more interesting,
which rough surfaces are produced.

In order to reproduce the experimental conditions~type of
etchant, concentration, temperature! a microscopic model for
the physical process should contain some tunable param
04610
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~at least one!. In our model, the anisotropy is introduced by
phenomenological tunable parameterp, which distinguishes
sites with a different local environment.

The introduction of the parameterp defines a characteris
tic scale in the problem. As a result the critical properties
the model are characterized by a continuous crossover
tween two universality classes corresponding to the rou
ness exponentsx51 andx50.63~Sneppen modelsA andB,
respectively@7#!. In particular one can define a parameter
5p/12p, which measures the time-scale separation betw
the dynamics of the different classes of sites. For lengthl
. l * }1/22p/p one observes a behavior characteristic of
Sneppen modelB universality class (x50.63), while for l
, l * }1/22p/p one observes a behavior characteristic of
Sneppen modelA universality class. The existence of th
crossover is difficult to detect directly on the plot for th
scaling of the surface widthW2( l ) ~especially for finite sets
of data! and it becomes evident looking at the power spec
This explains why large-scale experiments could give
impression of nonuniversality in the critical properties
rough surfaces.

Let us look at the meaning ofp in the case of etching. If
we represent the crystalline lattice of the silicon on a tw
dimensional plane we can imagine a square lattice wh
~see Fig. 1! the atoms can be found in each of the fo
positions marked in figure by the letters a–d. The four po
tions correspond to different oxidation states: from the s
ation~c! ~oxidation number 0! which occurs only in the bulk,
to the situation~d! ~oxidation number23). Note that all the
surface atoms are passivated by hydrogen atoms. The a
in the positions~a! and ~b!, corresponding, respectively, t
the oxidation numbers22 and21 ~two and one heteropola
bonds, i.e., Si-H bonds!, play an important role in explaining
at least from a heuristic point of view, the origin of th
anisotropy in the etched rates@16#. The parameterp quanti-
fies the ratio of the etch rates between the sites in the p
tions ~a! and~b!. The basic idea is that in the~111! plane of
silicon, there is only one heteropolar bond per silicon ato
Therefore there are three bonds to break for dissolut
while other planes@except the~110!# have more than one

FIG. 1. Schematic representation of the crystalline silicon latt
as a square lattice.
8-2
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KINETIC ROUGHENING WITH ANISOTROPIC GROWTH RULES PHYSICAL REVIEW E63 046108
heteropolar bond and accordingly a smaller number of bo
must be broken.

The paper is organized as follows. In Sec. II we descr
in detail the model and the set up of numerical simulatio
In Sec. III we present and discuss the numerical result
relation with the Sneppen model A and B universal
classes. In Sec. IV a discussion of the results and some
clusions are drawn together with a planning of future
searches.

II. MODEL

We give now a detailed definition of the model. Th
model is defined on a square 2D lattice tilted at 45°~see Fig.
1!. We consider a 111 dimensional interfaceh(x)5h(x,t)
with x51,2, . . . ,L, whereL is the linear extension of the
interface in thex direction. The initial condition for the dy-
namical evolution of this interface is given byh(2x,0)
51 ;xP@1,L/2# and h(2x21,0)50 ;xP@1,L/2#, in order
to have both classes of variables~lattice planes! participating
in the dynamics from the beginning, but different initial co
ditions do not change the properties of the model. The in
face, which satisfies locally the conditions@19#

uh~x,t !112h~x21,t !u<1,
~1!

uh~x,t !112h~x11,t !u<1

contains two classes of random variables that correspon
two separate classes of sites. The sites~M! for which it holds
“

2h.0 ~called minimum sites! which are, microscopically
the atoms with two heteropolar bonds, and the sites o
slope@slope~S! sites# for which one has“2h50. These last
sites correspond microscopically to atoms with one hetero
lar bond. To each class of sites is assigned a class of Ga
ian distributed uncorrelated random variables that mimic
disorder, and represents physically, for the case of etch
the binding energy of atoms:

h~x,h!PH @0:0.5# if x is such that“2h50

~0.5:1# if x is such that“2h.0.
~2!

The sites with“2h,0, for which all the chemical bonds ar
homopolar, i.e., Si-Si, do not take part to the dynamics a
they have assigned a zero value of the random variable.
riodic boundary conditions are assumed along thex direc-
tion.

The system evolves by updating the sitei * with the larg-
est random variable in one of the two classes of sites cho
at its turn, with a probabilityp. One thus updates with prob
ability p a site~S! and with probability 12p a site~M! ac-
cording to the rules~see Fig. 2!:

~1! h( i * ,t11)5h( i * ,t)12, h@ i * ,h( i * ,t11),t11#50,
~2! updating all the sites necessary to make satisfied

conditions 1~this phase is assumed to be instantaneous w
respect to extremal dynamics!,

~3! updating of the random variables for the sites, wh
changed their class of belonging. In particularh(x,h,t11)
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51/2*RAN if h(x,h,t)50 and h(x,h,t11)5h(x,h,t)
11/2 if h(x,h,t)Þ0, whereRANis a random value betwee
0 and 1,

~4! updating of the random variables of the sites, whi
have changed their height but that did not change their c
of belonging,~sitesS only!: h(x,h,t11)51/2*RAN.

The parameterp can vary in the range@0:1/2#. If we
definetS as the characteristic time scale forS variables and
tM the characteristic time scale forM variables one has

r 5
tM

tS
5

p

12p
. ~3!

The growth of the interface, in the etching process, rep
sents the invasion of the etchants into the silicon wafer. Fr
this point of view the updating of the sites~S! mimics the
etching of the~111! planes and the updating of the~M! sites
the etching in the~100! direction. Forp51/2 all the sites
which take part in the dynamics are equivalent and ther
no anisotropy (r 51), whereas the casep50 corresponds to
the maximal anisotropy in whichv (111) /v (100)5r 50, where
v (111) and v (100) are the etch rates in the corresponding
rections.

Our model can be viewed as a variation of the Snep
model for quenched surface growth, where two import
elements are added:~1! The anisotropy in the distribution o
the quenched random field, depending on the local cha
teristics of the growing surface and~2! a time-scale separa
tion for the dynamical evolution of the two classes of va
ables (S sites andM sites!, which is tuned by the paramete
p.

III. NUMERICAL RESULTS

We have studied this cellular automata by numeri
simulations in order to analyze its dynamical roughen
properties. The sizes we have chosen for the numerical si
lations range fromL52048 toL58192. For each value ofp
~we have consideredp50.0,0.02,0.2,0.5), 102 simulations
lasting 107 time steps have been performed and we ha
computed the growth exponentb, which rules the time evo-
lution of the widthW(t) of the surface@W(t);tb# before
the stationary state is reached, and the roughness exponex,
which gives the scaling of the width of the surface@W( l )
; l x#, in the stationary state. The stationary state is ca
self-organized in that it is reached spontaneously by the
tem independently of the initial conditions. This se
organization is confirmed by an analysis of the temporal e
lution of the distribution of quenched variables@the

FIG. 2. Schematic representation of interface dynamics.
8-3
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RAFFAELE CAFIERO PHYSICAL REVIEW E 63 046108
histogramF t(h)#. To characterize temporal correlations
the dynamics and check that the asymptotic state is criti
we studied the distribution of the avalanches in t
asymptotic state. As an independent check about the un
sality of the roughness properties of the model, we h
studied numerically the power spectrumS(k) of the height
profile.

To ensure that the system is in the stationary state,
studied the behavior of thenth moments~for n53,4,5) of
h(x,t) normalized to second momentum:

mn~ t !5

K (
i

@h~ i ,t !2h̄~ t !#nL
S K (

i
@h~ i ,t !2h̄~ t !#2L D n/2 , ~4!

FIG. 3. Time evolution~adimensional units! of the momentm3

~adimensional units! of the growing interface, normalized by th
second moment, forp50.0, 0.02, and 0.5~skewness!. One sees tha
asymptoticallym3 vanishes for all values ofp.

FIG. 4. Time evolution~adimensional units! of the momentm4

~adimensional units! of the growing interface, normalized by th
second moment, forp50.0, 0.02, and 0.5. One sees that asympt
cally m4 tends to different constant values for the different valu
of p.
04610
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whereh̄(t) is the mean surface height at timet. We get that,
after a transient, all the odd moments vanish and the e
ones tend to constant values~see Figs. 3–5!. In particular the
condition for the skewnessm350 ~Fig. 3!, which character-
izes the stationary critical state@7#, is realized after about 103

time steps per site, independent of the value ofp. These
results imply that the higher moments of the variab
h(x,t)2^h& scale in a trivial way~they are powers of the
second moment!, and after the transient the probability di
tribution of the variableh(x,t), which can be viewed as a
random variable, is Gaussian. The amplitude of the norm
ized even momentsm2n , in the asymptotic stationary state
characterizes the roughness properties of the interface.

In Table I we report the measured values for the dyna
cal exponentsb, which turns out to be independent ofp.
Figures 6–9 show the scaling behavior ofW2( l ) for different
values ofp. For p50.0 ~i.e., maximal anisotropy! the mea-
sured values ofx are affected by a finite-size effect and the
tend, in the limit L→`, to the valuex51.0 found for
Sneppen modelA @7# ~Fig. 6!. In this case the surface i
composed by very big pyramids~Fig. 10!. On the other hand
for p50.5, one recovers the universality class of Snepp
modelB with x50.63 ~Fig. 9!. For all the other values ofp
between 0 and 0.5 (p50.02 in Fig. 7 andp50.2 in Fig. 8!,
trying to perform fits away from the saturation regions, o
would be tempted to invoke the existence of a nonunive
behavior ruled by the parameterp. A careful observation

TABLE I. Values of the dynamical exponentb in our model for
different values of the anisotropy parameterp.

p b

0.0 0.96~2!

0.02 0.95~2!

0.2 0.94~2!

0.5 0.95~2!

-
s

FIG. 5. Time evolution~adimensional units! of the momentm5

~adimensional units! of the growing interface, normalized by th
second moment, forp50.0, 0.02, and 0.5. One sees that asympto
cally m5 vanishes for all values ofp.
8-4
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puts in evidence that the curves forW2( l ) seem to exhibit a
crossover between the Sneppen modelsA andB universality
classes. On the basis ofp one can define a characterist
length l * }1/22p/p above which one could see thex
50.63 behavior and below which one could see thex51
behavior. We shall come back to these considerations l
on when we shall discuss the power spectra.

We have also studied the time evolution of the distrib
tion of random variables on the invading interface@the his-
togram F t(h), where h is a generic value forh(x,h)#,
which is of great importance for models with extremal d
namics. The results of the simulation are shown in Fi
11–14. One can see thatF t(h) self-organizes, forpÞ0,
after about 105 time steps, into a distribution that is the s
perposition of two theta functions, one for each class of v
ables, each one characterized by a critical thresholdpc(p)
depending on the parameterp. The meaning of these thresh
olds is that onlyS variables larger thanhc

S andM variables

FIG. 6. W2( l ) vs l @both W2( l ) and l are expressed in adimen
sional units# for p50.0 and different system sizes. The lower
~dot-dashed line! corresponds to a sizeL5512, giving and expo-
nentx50.88(2), while the upper fit~dashed line! corresponds to a
size L58192 and gives an exponentx50.96(2). In this case we
expect that the exponent converges tox51 in the limit L→`.

FIG. 7. W2( l ) vs l @both W2( l ) and l are expressed in adimen
sional units# for p50.02 and different system sizes.
04610
er
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larger thanhc
M can grow@2#. For p50, instead, the histo-

gram has no self-organized critical state~Fig. 11!. Looking
carefully at Fig. 11 we can see that, while in the initial tra
sient there are a fewSsites, in the asymptotic state most sit
areS sites. In fact nearly all variables larger than 0.5~the M
variables! are disappeared. This observation agrees with
actual structure of the surface, which is composed by v
big pyramids~Fig. 10!, with a roughness exponentx.1.
This picture is confirmed by the acceptance profilea(h),
which is shown in Fig. 15. As in the Bak and Sneppen~BS!
model, the acceptation profile~that is to say the distribution
of the values of all updated quenched variables up to
actual time! exhibits correlation properties~it is not flat!,
reflecting temporal correlations in the dynamics. But, wh
the acceptation profile forS variables is quite similar to tha
of the BS model, going to zero linearly atpc , the acceptation
profile for M variables has a more complicated behavi
This difference originates maybe from the fact thatS vari-
ables (hP@0.5,1#) can turn intoM (hP@0,0.5#) variables
during the dynamics of the system, whileM variables cannot
becomeS variables. Moreover,S variables can have deve

FIG. 8. W2( l ) vs l @both W2( l ) and l are expressed in adimen
sional units# for p50.2 and different system sizes.

FIG. 9. W2( l ) vs l @both W2( l ) and l are expressed in adimen
sional units# for p50.5 and different system sizes.
8-5
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RAFFAELE CAFIERO PHYSICAL REVIEW E 63 046108
oped correlations before the transition toM variable and this
affects the shape ofa(h) for hP@0.5,1#. This might account
for the linear part of the acceptation profile ofM variables,
aroundh51, but the nonlinear part is more puzzling. Th
coupling betweenS variables andm variables could play a
role in this behavior, too, but at the moment we have no c
explanation of it. From thea(h) we can get a good estima
tion of the critical thresholdshc

S andhc
M for different values

of p ~see Table II!.
The stationary state is characterized by a constant r

betweenS andM sites, that is to say the evolution equatio
for the densitiesrS and rM of sitesS and M, respectively,
have an attractive fixed point in the stationary state@see Figs.
16~a!–16~d!#, with the asymptotic values ofrS ,rM depend-

FIG. 10. A realization of the growing surface forp50.0 ~hori-
zontal adimensional position on thex axis!. The surface is com-
posed by very big pyramids, thus with a strong prevalence oS
sites.

FIG. 11. HistogramF(h) (h is an adimensional number! of
quenched variables, at different timest ~adimensional compute
units!, for p50.0. Asymptotically, all~most of the! M variables are
eliminated.
04610
r

io

ing on the parameterp. One interesting observation is tha
even in the casep50, that is to say onlyM sites can be
selected by the extremal dynamical rule, there is a station
state for the system withrSÞ0. This is due to the particula
geometry of the lattice, for which the growth of anM site
implies the creation or annihilation of someS sites. In other
words, there cannot be surfaces without slopes (S sites!.

The roughness exponent accounts for scale free sp
fluctuations in the interface profile. In order to character
the eventual scale free fluctuations in the dynamical evo
tion of the system at its asymptotic critical state, that is to s
long-range temporal correlations, we have studied the a
lanche distribution. An avalanche is defined as a sequenc
causally connected elementary growth events. For the c
of models with quenched disorder and an extremal dynam
to which our model belongs, the initiator of a critical, sca
invariant, avalanche is identified in the critical state by a s
with quenched variablehc

M(p) or hc
S(p) ~respectively, for an

M initiator and for anS initiator!. The values ofhc
M andhc

S

FIG. 12. HistogramF(h) (h is an adimensional number! of
quenched variables, at different timest, for p50.02.

FIG. 13. HistogramF(h) of quenched variables, at differen
times t, for p50.2.
8-6



ic
s

he
ha
en
th

tic
rm

te
-

ed

00
es.
xi-

i-
re-
e an
s
8.
e-

at
are
ar

ng-
l to
dy

-

KINETIC ROUGHENING WITH ANISOTROPIC GROWTH RULES PHYSICAL REVIEW E63 046108
for different values ofp can be obtained by the asymptot
histogram distributions shown in Figs. 11–14. In our ca
there are two classes of variables, theSandM sites, and two
possible initiators for an avalanche. We call the avalanc
that start with anSsite,Savalanches, and the avalanches t
start with anM site,M avalanches. An avalanche lasts wh
a variable, which has been updated before the growth of
initiator, is selected by the extremal dynamics. The statis
of off-critical avalanches has been shown to have the fo
@2,20#

PX~s;h!5s2tXf X~ uh2hc
XussX!, ~5!

whereX5S,M , andh is the initiator of anX avalanche. This
distribution becomes a pure power law forh5hc

X . In the
limit t→` the system self-organizes into the critical sta
h5hc

X , and the~normalized! avalanche size distribution be
comes

FIG. 14. HistogramF(h) (h is an adimensional number! of
quenched variables, at different timest, for p50.5.

FIG. 15. Asymptotic acceptation~not normalized! profile a(h)
(h is an adimensional number! for p50.02 ~circles!, p50.2
~squares!, andp50.5 ~triangles!.
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PX~s;hc
X!5

s2tX

(
s51

`

s2tX

. ~6!

We have performed a set of about 103 realizations of size
L58192, lasting each one 23106 time steps, and collected
the statistics ofS and M avalanches over the last 106 time
steps, forp50.02, 0.2, and 0.5. These simulations requir
about two months of CPU time on our computers~a network
of DEC alpha machines with clocks going from 266 to 5
MHz!, and are at the best of our computation possibiliti
To reduce numerical problems connected with the appro
mation onhc

M ,hc
S , we used an alternative definition of crit

cal avalanches in models with extremal dynamics, which
sides on the causal relation between updated sites insid
avalanche~for details on the definition of critical avalanche
see Refs.@21–23#!. The results are shown in Figs. 17 and 1
Even after this big computational effort, our numerical r
sults are still a bit noisy. In particular the statistic ofS ava-
lanches forp50.02 is really poor. This is due to the fact th
for smallp values most of sites selected by the dynamics
M sites. Consequently, it is difficult to observe a quite cle
power-law behavior for both theS avalanches andM ava-
lanches distributions. We point out that the presence of lo
range temporal correlations is not necessary for the mode
have self-similar or self-affine spatial properties, as alrea
observed in a different context@25#.

TABLE II. Critical thresholdshc
S ,hc

M of variablesSandM, for
different values ofp.

p hc
S hc

M

0.02 0.47~1! 0.50~1!

0.2 0.41~1! 0.54~1!

0.5 0.35~1! 0.63~1!

FIG. 16. Time evolution (t is expressed in adimensional com
puter time units! of the densitiesrS and rM of sites S and M,
respectively, forp50.0 ~a!, p50.02~b!, p50.2 ~c!, andp50.5 ~d!.
8-7
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In order to better establish the critical properties of o
model we have measured the power spectrumS(k) of the
equilibrium surface. The model studied here is a discreti
cellular automaton, which can be thought as a modified v
sion of the Sneppen model for quenched interface grow
The Sneppen model has been shown to be, at least in 111
dimensions, in the same universality class of the continu
Kardar-Parisi-Zhang equation with quenched noise~QKPZ!
@24#. It is natural, but not necessarily true, to suppose that
our model, too, it is possible to find a formulation as a co
tinuous growth equation. Given a general growth equat
for h(x,t) like

]h~x,t !

]t
5A@h~x,t !#1g~x,t !, ~7!

whereA@ . . . # is an operator acting onh(x,t) andg(x,t) is
an uncorrelated quenched noise~the ‘‘temporal’’ direction
corresponds to the growth direction of the surface!, if the
operatorA@ . . . # is linear and local, the equation can b
Fourier transformed into

ivh̃~k,v!5Ã~k!h̃~k,v!1g̃~k,v!, ~8!

and by introducing the propagatorG(k,v),

h̃~k,v!5G~k,v!g̃~k,v!, ~9!

whereG(k,v)5@ iv2Ã(k)#21.

FIG. 17. BinnedS avalanches distribution for different value
of p.

FIG. 18. BinnedM avalanches distribution for different value
of p.
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The propagatorG(k,v) of Eq. ~7! is related to the power
spectrumS(k) of the interface in the asymptotic state. Th
power spectrum is so defined

S~k!5^FT@h~x!h~x8!#&5^uh̃~k!u2&, ~10!

whereFT@ . . . # is the Fourier-transform operator, the ave
age is over different realizations of the noise,h(x)5h(x,t
5`), and h̃(k) is the Fourier transform ofh(x). Equation
~10! is valid is the case the noise is uncorrelated in space
time, which is the case of our model. The relation betwe
G̃(k,v) andS(k) is the following @3#:

G̃~k,v50!25S~k!. ~11!

Equation~11! tells us that the power spectrum of the inte
face can give informations onk-dependent part of the propa
gator G(k,v50) and consequently on the structure of t
operatorÃ(k) in Eq. ~8!. For self-affine surfaces, the powe
spectrum follows a power-law scaling

S~k!;k22d, ~12!

where d is related to theglobal roughness exponentxglob
through the scaling relation 2d52xglob11 @3#.

Figures 19 and 20 report the behavior of the power sp
trum S(k) of the interface profile in the critical state fo
system sizesL52048,8192 and different values ofp.

For large values ofk, finite-size effects connected to th
discretized nature of the model become relevant and the
a deviation from the power-law behavior. Away from th
saturation effect it is evident in this case howS(k) is char-
acterized by a clear crossover between two power-law
haviors. In the lowk region @k,k* }p/(1/22p)51/l * #
S(k) scales with an exponentd low close to 1 @actually

FIG. 19. Power spectrumS(k) ~all the quantities are expresse
in adimensional units of the computer simulation! of our model for
p50.0, 0.02, 0.2, and 0.5~values referring to, respectively, th
plots from bottom to top! andL52048. As a guide for the eye, w
report the scaling law for KPZ~dotted line! and QEW~dashed line!
universality classes.
8-8
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KINETIC ROUGHENING WITH ANISOTROPIC GROWTH RULES PHYSICAL REVIEW E63 046108
1.07~3!# for all values ofp. The QKPZ~SneppenB model!
universality class is characterized by a global roughness
ponent @coinciding with the local exponent we have me
sured throughW2( l )# xglob5x50.63, givingd51.13, quite
near to what we find. For intermediate values ofk @k.k*
}p/(1/22p)51/l * # one gets an exponentdmid quite near to
the value 1.7~we find values between 1.7 and 1.86! which
corresponds to the quenched-Edwards-Wilkinson~QEW!
universality class (xglob;1.2 @3#!, independently of the value
of p. We point out that the QEW model is super rough w
a global roughness exponentxglob;1.2, and a local exponen
x51.0 @the one we measured throughW2( l )#. Forp near 0.5
the intermediatek region is very small, and it is difficult to
distinguish it from the saturation region. The same happ
when one tries to fit the lowk region forp close to zero. If
p50.0 or50.5, no crossover effect is observed, since th
two values ofp correspond to the ‘‘pure’’ QEW and KPZ
universality classes, respectively.

From these results we have a confirmation that the mo
does not exhibit nonuniversal critical properties. The appar-
ent nonuniversal roughness exponent is the consequence
crossover effect, tuned by the parameterp. The fact that this
crossover effect is difficult to observe when studying t
scaling of the mean-square widthW2( l ) of the sample, could
explain the discrepancy between the experimental findi
available in the literature.

FIG. 20. Power spectrumS(k) ~all quantities are expressed i
adimensional units of the computer simulation! of our model for
p50.0, 0.02, 0.2, and 0.5~values referring to, respectively, th
plots from bottom to top! andL58192. As a guide for the eye, w
report the scaling law for KPZ~dotted line! and QEW~dashed line!
universality classes.
n
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IV. CONCLUSIONS

In this paper we have introduced a model for surfa
roughening whose main peculiarity is that of taking expl
itly into account the anisotropy of the growth process
means of a tunable phenomenological parameterp, which
introduces local, i.e., dependent on the local environme
dynamical rules in the growth. The simple introduction
just one anisotropy parameterp is far from being able to
captureall the characteristics of etching processes, and
general of surface roughening experiments. In etching
periments, for example, transport phenomena in the solu
are likely to be important and both concentration and ag
tion have strong effects on transport. Nevertheless,
model captures at least some basic elements of the rela
ship between anisotropy and the apparent nonunivers
observed experimentally in etching processes. Moreover,
general requirement of a microscopic dynamical rule
pending on the local environment could be a key elemen
the apparently observed nonuniversality in kinetic rough
ing phenomena.

As a main outcome, the model exhibits a crossover
havior in its critical properties. For each value of the anis
ropy factorp the system reaches a critical stationary sta
with a characteristic length separating a KPZ-like~Sneppen
B model! behavior from a QEW-like~SneppenA model!
behavior. The crossover from one scaling behavior to
other is tuned by the anisotropy parameterp. If one looks at
the scaling ofW2( l ), the crossover effect cannot be eas
discovered, and the system seems to have a nonuniv
roughness exponent. A careful analysis of the power sp
trum S(k), however, shows a clear crossover effect. The
results can probably help to explain the relevant discrep
cies among experimental results@10–12#. We believe that
this behavior is the outcome of the complex interplay b
tween the global dynamics, which selects at each time s
the weakest site and the anisotropy effect that takes into
count local constraints in the growth.

It is worthwhile to stress how our model suggests t
possibility of several analytical approaches, from the tre
ment of the problem in terms of a continuous stochastic
namical equation, to the single site mean-field approach@26#,
or to the application of a method recently proposed for d
namical models driven by an extremal dynamics@21–23,27#.
Particularly promising, in this respect, is a recently propos
nonperturbative renormalization-group approach@28#, which
allows one to study self-affine problems.
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